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1. INTRODUCTION 

The purpose of this article is to illustrate the use of the 

minimum discrimination information (MDI) approach in studying 

null hypotheses of no linear interactions in contingency tables 

of "one response many factors" type.  In such contingency tables, 

the data can be looked upon as a collection of as many multi- 

nomial experiments as there are factor-level combinations and 

each experiment has a number of cells equal to the levels of a 

response variable.   one formulation of a "no linear 

interaction" hypothesis 

is that the cell probabilities of the response variable can be 

expressed as linear functions---of parameters which are- structurally 

less complex.  For   accounts     of different formulations of 

no-inter'action hypotheses and related references, the reader 

is referred to Bhapkar and Koch [1968] , Darroch f19741. 

The "no linear interaction" hypotheses can be formulated as 

linear constraints  on the underlying probabilities, written in 
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matrix notation as Bp = 9.  It is possible to apply MDI 

analysis to obtain estimates of cell frequencies and test 

various hypotheses and sub-hypotheses.  If the hypotheses 

are "nested" the MDI statistic for the stronger hypothesis 

(which imposes more constraints) can be analyzed into two 

components, one measuring disparity between the observed 

distribution and the weaker hypothesis and the other 

measuring disparity between the estimated distributions 

under the two hypotheses.  This feature of the MDI 

statistics is not enjoyed by the chi-square—type or Wald- 

type statistics used by many authors. 

For the sake of clarity of presentation, we will 

restrict ourselves to the hypotheses of no linear second 

order interaction in a 2x2x2 table and in a 4x2x2 table. 

This enables us to compare results with Bhapkar and Koch 

[196 8], who have viewed two sets of data as of the 

"one response many factors" type.  The analysis of a 2x2x2 

table shows how the use of an approximation in the MDI 

statistic leads to a statistic used by Bhapkar and Koch 

[196 8].  The 4x2x2 table is analysed under two hypotheses 

of no linear interaction of second order-, illustrating the 

analysis of information mentioned in the. • preceding paragraph 

2. GENERALITIES 

For a three-way rxsxt table in which the first variable 

is.a response and the other two variables are factors, one 
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formulation of no linear second order interaction is given 

by 

(2.1) H  : p(ijk) = p(i..) + y(ij.) + y(i.k), i=l,...,r, j=l,...,s, 
V—1        +• 

where the p(ijk) are subject to the constraints 

(2.2) £._,p(ijk) = 1, for each fixed pair (jk) , 

and the parameters y depend only on the indicated indices.  The 

hypothesis H is equivalent to the following (r-1)x(s-l)x(t-1) 

constraints in addition to those   in (2.2): 

(2.3) p(ijk) - p(ijt) - p(isk) + p(ist) = 0, 

X  X,  f    a    a    •   f    \X."ml.}    f J   X i    9    9    * f    vS^J./ g 

Writing 

(2.4) p_ = (p(lll) ,p(211) ,...,p(rll) ,p(112) ,... ,p(rst) ) ' , 

where the (jk) indices are in lexicographic order, the 

constraints (2.2) and (2.3) can be expressed as 

(2.5) Bp_ =  9_ 

where the vector Q_ consists of the first st elements equal to 

unity and the remaining elements equal to zero.  This is 

illustrated in the examples below. 

Let x(ijk) denote the observed frequency in the (ijk)-th 

cell and x denote a vector similar to p of (2.4).  Also let 

x(.jk) denote the total number of observations for the (jk)-th 
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factor combination and let N = E^, E,_,x(. jk) . Basic to the 

information analysis is the discrimination information 

function 

(2.6)   I(P-.TT) - E? ,z£ ,w(jk)Sf ^p(iJKHnrp(ijk)/TT(ijk)] 

where w(jk) = x(„jk)/N.  The vector TT_ is similar to p_; It is 

an arbitrary collection of st probability distributions,, each 

on r cells.  It is assumed that x(ijk) , p(ijk) and rr(ijk) are 

positive for all (ijk) .  The choice of TT_ depends on the 

analysis at hand.  When it is desired to assess the departure 

of the data from an external hypothesis (as is the present 

case) f IT is taken to be the vector of observed proportions in 

each of the st factor combinations. 

The MDI estimates x*(ijk) = Np*(ijk) are such that the 

discrimination information (2.6) is minimized subject to the 

constraints Bp_ = 0_.  In other words, p* (ijk) is the distribution 

which satisfies the hypothesized constraints (2.5) and is 

"closest" (in the MDI sense) to the observed distribution. 

There are several convergent iterative computer algorithms 

for obtaining x*(ijk).  One is described in the Appendix. 

The MDI statistic 2I(x*:x) = 2NI(p*:ir) has a chi-square 

distribution in large samples with degrees of freedom equal to 

rank(B) - st. 
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3.. THE 2x2x2 TABLE 

Consider the probabilities of a 2 x 2 x 2 contingency 

table (Table 1) . 

Table 1 

B     j = 1 3     j=2 

C    k=l Y     k=2 C    k=l Y    k=2 

1*1 A    p(lll) 

i=2  a    p(211) 

p(112) 

p(212) 

p(121) 

p(221) 

p(12 2) 

p(222) 

The experimental procedure selects a fixed number of 

observations under the four possible combinations of the 

factors (B,ß), (C,Y) and determines the number of occurrences 

of (A,a) for each case.  In effect then the procedure is 

examining four binomials with 

(3.1)  p(ljk) + p(2jk) = 1, j=l,2,k = 1,2. 

The corresponding observed values are shown in table 2, 

It' is desired to test whether the observed values are consistent 

with a null hypothesis of no interaction on a linear scale, 
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Table 2 

1=1 

1=2 

j= L 
> 

? 

k=l k=2 k=l k=2 

x(lll) 

x(211) 

x(112) 

x(212) 

X(121) 

x(221) 

x(122) 

x(222) 

xC.ll) x(.12) x(.21) x(.22) 

that is 

HQ:  p(lll) - p(112) = p(121) - p(122) 

(3.2)    or p(lll) - p(112) - p(121) + p(122) = 0. 

We shall determine estimates for the cell entries subject 

to the null hypothesis and. compare the estimated and observed 

values.  The estimated table is given in table 3 where the 

X's are to be determined. 

Table 3 

1=1 

1=2 

j»l j-2 

k=l k=2 k=l k=2 

x(lll) +x 

x(211)-X-l 

x(112)+A2 

x(212)-X2 

x(121)+X3 

x(221)-x3 

x(122)+X4 

x(222)-X4 

x(.11) x(.12) x( .21 x ( . 2 2 j 

We shall use the principle of minimum discrimination 

information estimation and thus determine the X's which 

minimize 
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f    (xCLlD+Ä-j^Hn >(111)+X1,    (x(211)-X,)    £nx(211)-Xl 
x(in) • xT2ixr" 

+(x(112)+X,)   Jlnx(112)+X2.    (x(212)-X0)    £nx(212)~A2 
x(112) 

x(121)+X ,,   ^      + (x(121).+X,)    Hn   '•      ;      3, 
lJJ) 3 ~x(l21) ~+ 

x(212) 

3,    (x(2.21)-X,)    £nx(221)"A3 
J       x(T2ir" 

+ (x(122)+X4)    ^nX(122)"'rA4|    (x(222)-X4)    £nx(222)~A4 
x(12 2) "x(222) 

xdlD+XJ      x(112)+X0     x(121)+X3J      x(122)+X4 

x(.2i)  +    xrnrr v (  x(.iir x(7l2) 

where T is a Lagrange undetermined multiplier and (3.2) is 

reflected by the condition 

(3.4)  xdlD+XjL   x(112)+X2   x(121)+Xs   x(122)+X4 = Q 
• •+- 

(.11) x(.12)    -X(.21)' xf-22) 

Differentiating (3.3 ) with respect to X, , 

to the "normal" equations 

.,X4 leads 

r 

(3.5). 

ln x(lll)+X1 

x riirr 
^211)IX_i +  j„   o 

x(2Tl) "  xT.ll)     ' 
x(112)+X~ 2-n        2 0 x(212)-X0 £n        2 

x(112) x(212) 

x'(121) x(221) 

^ ^22>+X_4 Änxl2ü,-X4 
^    x(122)  " _xl222"7 

x(7l2T   U ' 

T   _ 0 , 

+ 

x(.21) 

xTT22) 
0 , 

There are a number of different iterative approaches to determine 

the solution to (3.5) but our interest here is to examine the. 

relation of an approximate solution to other*proposed methods. 
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Assuming that the ratios of   A' s to the observed values 

are small, we use the approximations 

In x(lil)+X1  A-, 

"xTfrn    ~ x(in) 
„  x(211)-A, ,   In 1 ~ 

xTTll) 

A 1 f *L- T-\— a f 

x.(2TTT 

in (3.5) and get 

f 
Xl      Al + 

(3.6)\ 

"xTTuJ 

x(112T 
+  A2 

x(2li)  xTTTU 

T 

= 0 = A 
x(.ll) 

+ 

X. \ A- «L *-. ) X \ 9 J_ A ) 

X X3 X3 
x(121)    . xl22T)   x(.21) 

XJ     X4 T 

xTl22)  +  xl222) + xT722) 

= 0 =A 

«= 0 =A 

= 0 =A 

2 

1 x-(lll) x(211)   x(.ll)  ' 

x(.12) T 

x(112) x(212)   x(.12) 

x(.21) 

3  x(121  x(221)   x(.21) 

x(.22) T 

4  x(T2 2) x(222T  x (T22T 

From (3.6) and (3.4) we have, introducing the notation 

x(lij) = x(.ij)p(ij), x(2ij) = x( .ij) g (ij ) , p (ij) + q(ij) = 1, 
r 
,      x(lll)x(211) 
k      - - - 2  T 
X      (x(.ll)r 

A9 =   x (13.2 )x (212) 

(x(,12))/ 

(3.7), 
V, =   x(121)x(221) 

- p(11)q(11)T , 

p(12)q(12)x , 

p(21)q(21)x , 

(x(.21)) 

A4 = " x(122)x(222)_  = - p(22)g(22)x 

(x(.22))2 

T  *   P (ID ~ p(12) - p(21) + p(22) 

E.(li^JAi.U p(12 jqrXg>Jp(21)q(21)+ pJ^Kj^U^ V x(.ll) x(.12)    x(.2.L) x(.22) 
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Let us write 

X*(lll) = x(lll) + A,, x*(211) = x(211) - X     , 
(3.8) 

X*(112) = x(112) + \   ,   x*(212) = x(212) - A2 , 
etc. 

where the A's satisfy (3.5). 

If we also use the quadratic approximations 

/., ~? off    /-ITI\..-I s     n       X(lll)+A, x(211)-A, (3.9)    2{(x(lll)+A1) £n J. [ 1 + (x(2ii}-.i ) £n   ,011,~) 
x(lll) 1 x(211) 

A2 ,,2 ,   1 1      2    x(.ll)   _.     Al 
/A1 l x(lll) + x(211);  Al x(lll)"xl2TI)~ :   "' ' ' x(.ll)p(ll)q(ll) 

then we get for the minimum discrimination information- statistic 

2l(x*:x)=2Z I I  x*(ijk)An  ^ii^i. J      x(j-jk) 

"V2 I  p(H)q(ll) , p(12)q(12?   p(21)c?(21?  p(22)g(22) > 
. L  

l    x(.ll)        x(.12)  +  x(.2i)     * x(.22)  / 

f^ T0N      _        {p(ll)-p(12)-p(21}*p(22)) 2 

p(ll)g(ll)   p(12)q(12)   p(21)q(21) -   p(22)g(22) 
x(.Il)   '    x(.12)        x(.21)   ' '    x(."22) 

"*i (xTmr +- xmir1^2 C
XTIT2T + srezbrr1^- ^l (sruhr + nik1 

2 Note that the last value in (3.10) is the modified Noyman Xi 

C3.li)   x
2 = z -J^HZ^2)1 A
1   •      obs 

and indeed the equations in (3.6) are those to determine the 

2 . minimum modified x  estimates.  The next to last value in (3.10) is 

the statistic given by Bhapkar and Koch [19C0,mp. 116} based on a 
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criterion due to Wald.  The square root of this value is the 

statistic used by Snedecor and Cochran [19 67, p. 496]. 

In accordance with the minimum discrimination information 

theorem (Kullback [1959]) the log-linear representation for 

x* (ijk) is given graphically as in figure 1 where the in- 

terpretation is 

*n4fnrr Li" T/X('n) ' 
In x* (211) 

•   x(lll)     ^l   ' 

(3-12^n 4friir L2 + T/x(-12) ' 
£n  x* (212)_ 

x(212)      h2   ' 
m P • • • • • 

£n  x* (222) _  L.    . 
x(222) 

Recalling   (3.8)   we  see   that   (3.12;   in   fact  leads   to   (3.5). 

If we write 

9«_x*(lll)   _x*(112)   _x*(121) x*(122)   _n*m).n*n„.n*,rw^f??l 6     ITCTiT)      xTTDT   ~x-(T2T)" + "xTTW ~P  (11)  P  
(12)  P

   
(2JJ+P

  
(22)' 

(3.13) 

:  x(lll)        x(112) x(121)    ,   x(122)      Ä,,,,    A
Mov    *„,,*„„ 0=xl7iiT - xirT2T ~ XT72T)- H" xTTYT =p<u>-p<i2)-p:(2i)-i.P.(22) , 

then  as   shown  in   Kullback [1959,   p.   101-106] 

(3.14)    2I(x*:x)    Z   (0*-rOVa2   , 

"2 where a  is determined as follows.  Let T denote the 8x5 matrix 

in figure 1, that is, 
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1 0 0 0 -l/x(.ll) 

1 0 0 0 0 

0 1 0 0 +l/x(.12) 

0 1 0 0 0 
(3.15)      T= 

0 0 1 Q + l/x(.21) 

0 0 1 0 0 

0 0 0 1 -l/x(,22) 

0 
1» . -...- 

0 0 1 0 

and D  the 8x8 diagonal matrix with entries x(ijk), that is, 

x(lll)    0   • •. •  • .   •-.-   --.     .     o 

0   x-{211) 

x(112) 

x(2l2) 

x(121) 

x(221) 

(3.16) D = 
—x 

x(122) 

0      ......  x(2 22) 
i__ _  .»•.-.•        .   ^ 

Compute the 5x5 matrix S = T'D T and partition it as follows 

(3.17)  S = 

-11 -12 

-21 -2-2 

, S_1 1   is 4 x 4, S~~ is lxi, 

—21   — 12 

then  a'  in   (3.14)   is  given by 

(3.18)   a2 =  S22   -S21   £yips_2     ' 

It may be verified that  this   results   in 

(3.19) 
"2        x(lll)x(211)      x (11.2) x (212) _,.   x (121) x (221)   +  ^J-22'l2L^21L 

(x(.ll)) (x(.12)) (x(.21)) (x(.22)) 

=   p(I.l)q_(ll)_   ,    p_(_12)a(12)     ,    p_(21_) g (21)_        pJ22)n(22) 
~xTl'f)"     "r  "    XU12) " xf.2l)" K(.22) 



- 12 

But 0* in (3.13) is zero and we see that (3„14) is indeed the 

next-to-last value in (3.10).  It is interesting to. note that 

2I(x*:x) can be approximated without necessarily computing 

the values of x*(ijk). 

Note now that  in order to express the hypothesis H  of o 

(3.2) in the form B p_- 0_, we can let 

p_=   (p(lll),   p(^11),   p(.112)#   p(212),   p(121),   p(221), 

p( 122. ,   p(222))// 

(3.20) 

B= 

ana 

(3.21) 

11000000 

00110000 

0 0001100 

00000011 

10-10-1010 

0=    (1,1,1,1,0) 

Figure   1 

,i j k Ll L2 L3 L
4        T 

1 I 1 1 -l/x(.ll) 

2 i 1 1 

1 1 2 1 .     +l/x(.12) 

2 1 2 1 

1 2 1 1 +l/x(.21) 

2 2 1 1 

1 2 2 1 -l/x(.22) 

2 2 2 : 1 
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We shall illustrate the preceding discussion by Bartlett's 

data on root cuttings used also as an example by Snedecor 

and Cochran [1967], Bhapkar and Koch [1968], Derkson [1972]. 

Tue following Table 4 from Bartlett [19 35], who refers 

to data from Hoblyn and Palmer, is the result of an experiment 

designed to investigate the propagation of plum root stocks 

from root cuttings.  There were 24.0 cuttings for each of the 

four treatments. 

Table 4. 

At Once 

j = l 

In Spring 

j = 2 

Long 

k=l 

Short 

k=2 

Long 

k=l 

Short 

k=2 

Dead i=l 

Alive i=2 

8 4. 

156 

133 

107 

156 

84 

209 
I 
i 

3.1  ! 

240 240 240 2 40  i 

By using the B mid 0_ defined in (3.20) and (3.21) and the 

iterative algorithm described in the Appendix the MDI estimates 

x*(ijk) of the cell-frequencies are obtained as 

82.883   134.213   157.117 '  208.448 

157.117   105.787    82.883    31.552 

They agree within round-of f errors with those, obtained by 

Berkson [1972].  The MDI statistic 2I(x*:x) equals 0.0819 with 

on e D . F . 
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4 THE 4x2x2 TABLE 

Analysis of hypotheses of no linear interaction in a 

4x2x2 table is illustrated by Schotz"s data Table 5 on drivers 

in injury producing accidents, taken from Table III of Bhapkar 

and Koch [1968], who regard accident severity as response and 

the other two classifications as factors. 

Table 5. 

Accident 

Severity (i) Minor '• Moderate 

Moderately 

Severe 

Severe 
to 

Extreme 

.93 

Total 

Driver Group 
(k) 

"Mridif 
Accident-(,r) 
Type (j)  v. .05 

 """ — '?• - •• 

.33 .71 

Lone Driver Rollover 

Non-rollovei 

21 

99G 

" ~J 

567 

5454 

1356 

2773 

6 4 4 

1256 

2 5 8 8 

10479 

Sub-total 10.17 6021 4129 19 0 0 13067 

Injured Drive. 
with 

Passengers 

: Rollover 

Non-rollovei 

18 
j 
i  679 

553 

4561 

  

1734 

2516 

 ' •••• 

869 

1092 

317;' 

n t > » o 

Sub-total i 697 

I 
5114 

  

42 5 0 19 6.1 12 02 2 

Total 
i 
11714 11135 8 37 9 3861 2 5 0 8 9 



15 

Let us ignore the numerical severity "ridit scores r., i=l,...4 and 

consider the hypothesis of no linear second order interaction formulated 

in (2.3).  The B matrix is 

Cell index: 111 211 311 411 112 212 312 412 121 221 321 421 122 222 322 422 

(4.1) 13= 

1  . 
1 1 1 1 0 0 0 0 0 0 0 0 0 0 Ü 0 

0 0 0 0 1 1 1 1. 0 0 0 0 0 0 0 o 
0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 
1 0 0 0 -1 0 0 0 -1 0 0 0 1 0 0 0 
0 1 0 0 0 -1 0 0 0 -1 0 0 0 1 0 0 
0 0 1 0 0 0 -1 0 0 0 -1 0 0 0 1 0 

and 

(4.2) _G - (1,1,1,1,0,0,0) ' . 

Using the algorithm described in the Appendix, the MDI estimates of 

cell frequencies come out to be 

x* (111) = 
x*(121) = 
x* (112) = 
x*(122)= 

27.32 x*(211)= 
932.32 x*(221)= 
14,59 x*(212)= 

734.45 x*(222)= 

531.50 x*(311)= 
5535.91 x*(321) = 
583.70 x*(312)= 

4884.30 x*(322) = 

1359.16 x-1- (411)= 670.02 
2768.49 x*(421)= 1242.2: 
1733.23 x*(412)= 342.4C 
2522.48 x*(422)= 1106.7", 

The MDI statistic 2I(xA:x) with 3 d.f. is 19.703, which is significant at 

5% level, showing that the data do not support the hypothesis of no 

linear second order interaction as given by (2.3). 

It is interesting to examine here the hypothesis of no linear 

second order interaction with respect to average "ridits" considered 

by Bhapkar and Koch [19 68].  The hypothesis is 

111 : Ak = zi-sl
ritp(ilx)-p(i2k)] = A, k=l,2, 

where A is a constant.  This is equivalent to A. - A = 0.  The 

5x16 matrix B, corresponding to H, has the same first 4 rows as B and 
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the fifth row is 

(rl'r2'r-3'r4'*"rl'"r2'"r3'"r4'"rl'"r2rr3rr4'rl'r2'r3'r4 5 * 

The vector 0, equals (1,1,1,1,0)'. 

The MDI estimates x*,(ijk) of cell frequencies are given below: 

x*(lll)= 19.96 x*(211) = 551.09 x*(311)= 1359.62 x*(411)- 657.3" 
xf(121)= 1004.55 xf(221)= 5470.00 xf(321)= 2759 .92 xf(421)= 1244.5' 
x*(112)= 18.80 x*"(212) = 566.69 xif(312)= 1732.79 x:-(412) = :355.7> 
x--(122) 671.88 x'£"(222) = 4543.52 x>- (322)« 2529 .15 x-f (422) = 1103 . 4i 
1 1 1 -L 

The MDI statistic 2I(x*:x) is 1.9 80 with 1 d.f. This should be compared 

with the value 2.02 obtained by Bhapkar and Koch [1968] for their 

Wald-type statistic. 

Now observe that H, is implied by the stronger hypothesis H 

given by (2.3) , since the fifth row of B, can be expressed as a 

linear combination of rows of B.  To see this let B (h) denote the 

h-th row of B of (4.1), then 

B1(5)- r.LB(5)+r2B(6H-r3B(7)+r [B (1)-B (2)-B (3)+B (4)-3 (5) ~B (6)-3 (7) ] . 

Hence we can analyze the information 2I(x*:x) as follows: 

Analysis of Information 

Component due to       Information      D.F.      Chi-square (ä:j) 

H 2I(x*:x)= 19.703       3 7.815 

2I(x*:x* )=17.723       2 5.991 

Hx 21{x*:x)=  1.930       1 3.841 
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We see that the data do not provide statistically significant 

evidence against the hypothesis H^ of no second-order Interaction 

with respect to average "ridits". In other words, this hypothesis 

does explain the departure from the hypothesis (2,3) of no linear 

second-order Interaction. 

Further analysis of these data can he done In two ways; in 

terms of "ridlt" values and in terms of the non-quantitative 

contrasts among p(IJk) given hy the last three rows of the matrix 

B of (4.1). 

"Ridlts" ; Note that the data are not consistent with the 

hypothesis of no linear second-order Interaction (2l(x* :x)=19.703, 

3 d.f.), while they can be regarded as consistent with the hypothesis 

Hj of equality of means of the "ridlt" values (r^,T2>?%,r^) of 

the four distributions (3l(x*:x)=1.98o, 1 d.f.). The remaining 

two degrees of freedom can he associated respectively with the 

hypotheses of equality of second and third moments of the "ridit" 

values, the hypothesis H2 of equality of means and second moments 

(which Is equivalent to the hypothesis of equality of means and 

variances) corresponds to a 6x16 matrix, B2, say, which has the 

first five rows as in B and the sixth row Is 

( y>2      y«3      r3      r2      — r&     _ y>2      _ y2      _ y»S      _ y>3     _ v>3     „ r3      — T3      T*2      V2      I*2      V2 *l 
»    1   l"8»     3»     41 1   » 3 »      T3»     •L4>J-i>        3 » 3 >     J-4>xx>x3>3>x4/ 

and 83 = (1,1,1,1,0,0) '. 

Under E, the MDI statistic 2l(xJ:x) comes out to be 10.036. 

The difference 10.036-1.980=8.056 is the contribution due to the 

additional constraint in B3 as compared to Bt , assignable to 

equality of variances. Finally the difference 19.703-10.036=9.667 

is the contribution due to equality of the third moments in 
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addltlon to the equality of'the first two moments. Since each of 

these differences Is asymptotically a chi-square with one degree 

of freedom , we conclude that though there Is no significant 

second- order linear Interaction with respect to mean "ridits", 

there appears to be a significant contribution due to heterogeneity 

of the second and third moments of the four "ridit!t distributions. 

Non-quantitative approach. A different line of analysis treats 

the response variable (accident severity) as a qualitative variable 

ignoring "ridlt" values. In this case, since the overall hypothesis 

of no linear second-order interaction leads to a significant MDI 

statistic (2I(x*:x)=19.703, 3 d.f.) it may be of interest to 

examine which of the three constraints (given by the last three 

rows of the matrix B in (4.1)) contribute significantly to 2l(x*:x) 

For this purpose , we set up several B-matrices omitting one or 

two rows from the last three rows of (4.1) each time. For example, 

the B-matrix without the seventh row corresponds to the (weaker) 

hypothesis 

p(111)-p(112)-p(121)+p(122)=0, 
H : 
3     p(211)-p(212)-p(221)+p(222)=0. 

Implicit in H3 Is the third constraint 

[p(311)+p(4ll)]-[p(312)+p(4l2)]-[p(321)+p(421)]+[p(322)+p(422)l=0. 

Hence H3 tests no linear second-order Interaction with respect 

to levels 1 and 2 combining levels. 3 and 4 of the response. Note 

that under these weaker hypotheses the MDI statistics will give 

a value not larger than 19-703. The analysis Is summarized In 

Table 6. 
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Omittlng rows 5 and 6 of the matrix B of (4.1) corresponds 

to the hypothesis of no linear second-order Interaction in a 

2x2x2 table with level 3,   pooling all the remaining levels. This 

Is the only hypothesis with which the data are consistent. Thus 

It appears that levels 1 and 2 of accident severity both jointly 

and separately account for a major (significant) contribution 

towards the presence of a linear second-order interaction. 

Table 6 also Indicates a way of reducing categories in a 

contingency table with the Inherent qualities of the observed 

data least affected. Thus If the given 4x2x2 table is to be 

reduced to a 3x2x2 table, this should be done by combining 

levels 3 and 4. Similarly, if a 2x2x2 table is required as 

a partial summary of the 4x2x2 table one should examine all 

the possible ways of pooling the levels of the response variable 

and select the way in which the maximum contribution to the linear 

second-order interaction Is retained. The possible ways are level 

(1). against (2)+(3)+(4),  (2) against (i)+(3)+(4), 

(3) against (l)+(2)+(4),  (l)+(2) against (3)+(4), 

(l}+(3) against (2)+(4), and (l)+(4) against (2)+(3). 

The MDI statistics corresponding to the first three combinations 

are given In table 6 as the three entries 11.803,9-750, and 0.032 

respectively. To find the MDI statistics corresponding to the 

remaining three combinations one can add the last two rows of the 

B-matrices when rows 7, 6, 5,   are omitted one at a time. This gives 

the MDI statistics as 3-517, 1.538, and 8.078 respectively. The 

largest of these. MDI statistics is 11.803, showing that levels 

2, 3, and 4 should be pooled and level 1 be retained In the 

2x2x2 table. 
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The analysis above shows that levels 1 and 2 are the main 

contributors to the departure from the hypothesis of no linear 

second-order Interaction. 

Table 6 

MDI Statistics Under Different B-matrices 

Operation on rows of (4.1)        MDI statistic D.F-. 

Delete (7) 

Delete (6) 

Delete (5) 

Delete (6), (7) 

Delete (5), (7) 

Delete (5), (6) 

Delete (7), add (5) and (6) 

Delete (6), add (5) and (7) 

Delete (5), add (6) and (7) 

18.385 

12.125 

13.188 

11.803 

9.750 

0.032 

3.517 

1.538 

8.088 

2 

2 

2 

1 

1 

1 

1 

1 

1 
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APPENDIX 

Described below is an algorithm to obtain x*(ijk) = Np* (ijk) 

which minimize the discriminationinformation function (2 .6) subject 

to the constraints Bp = 9_, where p_ is as in (2.4) . (Gokhaie [1974]) „ 

With w(jk) = x(.jk)/N, multiply the first r elements of p_ by 

w(ll), the second r elements by w(12), and so on.  The vector so . 

obtained can be written as WJD^ where W- is a diagonal matrix, the . 

entries in the first r diagonal positions being w(ll), those in the 

next r diagonal positions being w(12), etc»  In fact, it is easy 

to see that WJD is a probability distribution over the rst cells. 

The constraints BJD = 8_ can be written as 

BW,"^p = 9. = C(Wp) , say. 

The elements of Wp_ can be indexed by a subscript t, say»  It is 

thus sufficient to consider the problem of minimizing 

(Ä.1) I(P:n )= Zt Pt'An(Pt/: ly 

with respect to the constraints 

(A.2) CP-- jo. 

Note that C= Bff"1, _P = Wp and II = Wir. 

Assume now that'the rows of C are linearly independent.  There 

exists a-unique P* which minimizes - (A-.1-)—and satisfies - 

(A-3> §S p* = ^n n + £'i 

where &n a denotes [In  a,,.,.,An a )' and 1 is a vector of Lagrangian 

multipliers.  (See Kullback [1959]).  Let 

(A.4) C*= C'(CC')"1 and R= C+C. 
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Then equation (A.3) is equivalent to 

(A.5} (I-R) (An P* ~ £n_II) = 0. 

The symmetric and idempotent matrix R projects vectors of dimension- 

equal to that of P onto the space spanned by rows of C.  Let 

u ** ^1  : 9.+£ + ^~rB-)l >0 K 

where for a vector x, x > 0" denotes that every element of x is 

positive.  Then for every z_ e  U, G_ 8_+ (I-RJ.z_ is a solution'of (A.2). . 

Conversely, for every probability vector P which satisfies (A.2) ,, 
4. 

there exists a z_ e U such that P - C 8+(I-R)z_.  The first assertion 

is easy to verify and the second follows by setting z = P and 

noting that C _£ —  RP.  Consider (A.l) as a function of z_ defined 

over U. Then 

I(z) > 0, 

the gradient G(z)   of  <?{z)   at  2.  is 

(A. 6)      G(z)   =   (I-R)    (An P(z)   -   £n  II   } 

and the Hessian of I at z is 

(A. 7}  H(z) - (I-R) U(P(2))]~
1(I»R) , 

where A (b) denotes a diagonal matrix with elements of vector b in 

the diagonal. 

Being idempotent, I~R is positive definite, 

so that I is a convex function of z over the convex set U, 
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Thus for a z  satisfying G{z   ) = 0, I(z) assumes its minimum, over 

U.  In fact; G(z ) =0 implies that the corresponding P(z ) 

satisfies (A.5) in view of (A.6). 

At the s-th iteration the algorithm uses a vector z_(s) in U 

and the corresponding P (s) = CT£+(I-R) z_(s) .  If 

(A.8) fG(s) |= |G[zis)3 i< e, 

where e > 0 is chosen according to the required accuracy, the 

procedure is terminated and P^ is set equal to ?ts).  If (A.8) 

does not hold, the direction J^(s) of maximum rate of decrease in 

I(z) at _z(s) is obtained by norming (-G(s)) „    A positive 

constant c(s), sufficiently small, is then found such that with 

_z(s+l) = jz(s)+c(s)D(s) and 

P (s+l)=CjL (_I-R)£(s+1) 

(A.9) P (s+1) > 0 

and 

(A.10) I (s+1) <  I(s) .  . 

The (s+l)-th iteration is started with z_(s+l) and P(s+1}„ 

One way of finding c(s) is to first set it equal to unity.  It 

is repeatedly doubled until one of (A.9) or (A.10) is violated„ 

If (A.9) or (A.10) do not hold with c(s) = 1, it is repeatedly 

halved until they do. 

Consider now the choice of z_(l) and P(l) .  If some p >0 is 

knom to satisfy. (A.2) , we set P(l) = z_(l) = p. If not, p_ can be 
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found, easily, though by trial and error, by several methods.  One 

— 1 method is to compute q(£) = A (£) C_' [CA (£) C' ]   9_ for a positive 

probability vector _£ and set p_ = <g_(£;)if the latter is positive» 

+ 
Another method is to check whether C'6+(I~R)£ is positive and, if 

so, set it equal to P_(l)..  Usually, putting £_ equal .to the observed 

probability vector gives the desired value of p.  In .fact, then 

q_ (£} is the "minimum modified chi-square" estimate of P_ subject to 

2 + (A.2) , which minimizes Z (P - £ ) /£,, while C J3+(£•Rjj[_ minimizes 

the Euclidean distance between P and j>  As such, these p serve as 

good starting points for the iterations. 

The numerical computations of sections 3 and 4 were programmed 

in APL/3 60. 
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